
BioSparks: Jewelry as Electrochemical Sweat Biosensors with
Modular, Repurposing and Interchangeable Approaches

Shuyi Sun∗
University of California, Davis

USA

Alejandra Ruiz∗
University of California, Davis

USA

Sima Pirmoradi
University of California, Davis

USA

Katia Vega
University of California, Davis

USA

Figure 1: BioSparks: a. System components, b. Modularity, c. Interchangeable electrode, and d. Repurposing

ABSTRACT
This paper presents BioSparks, a wearable device that detects glu-
cose levels in sweat through electrochemical biosensors craftedwith
traditional jewelry techniques. Unlike conventional biosensors that
are disposed of after use, BioSparks employs a repurposing method,
allowing for the reuse of discarded electrodes within the jewelry’s
chain, as pendants or earrings. It incorporates interchangeable elec-
trodes that facilitates their replacement after timelife. The modular
design enables the wearable to be placed on various body parts,
including the neck, wrist and waist. The paper outlines our design
considerations for Wearability Factors for Jewelry Biosensors, and
the fabrication process combining traditional jewelry techniques
and electromistry. Our technical evaluation shows the performance
of our biosensor under ten different glucose concentrations.

CCS CONCEPTS
• Human-centered computing → Interface design prototyp-
ing; • Hardware → Emerging interfaces.
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1 INTRODUCTION
Electrochemical biosensors are devices that employ electrochemical
reactions to detect and measure specific substances like glucose,
pH, and sodium. These biosensors convert the concentration of the
substance into an electrical signal, allowing for real-time monitor-
ing and analysis. They consist of three key electrodes: the working
electrode, which detects the target substance; the reference elec-
trode, which provides a stable reference point; and the counter
electrode, which completes the electrical circuit by conducting the
necessary current. In recent years, the development of electrochem-
ical biosensors in sweat [12, 18, 37] has emerged as a promising
approach for health monitoring. Various form factors, like patches,
wrist watches, transfer tattoos, stickers, or bandages, have been
proposed [35].

This paper focuses on using electrochemical biosensors to mea-
sure glucose levels in sweat by placing the electrodes directly in
contact with the skin. Traditional glucosemonitoringmethods, such
as finger-prick testing [42], permanent tattoos [51] or microneedles
attached to the skin [46], have limitations in terms of invasiveness,
inconvenience, and potential skin damage. This project focuses in
sweat analysis, offering non-invasive and continuous monitoring
capabilities. Moreover, our design approach provides modularity

315

https://doi.org/10.1145/3594739.3610787
https://doi.org/10.1145/3594739.3610787
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3594739.3610787&domain=pdf&date_stamp=2023-10-08


UbiComp/ISWC ’23 Adjunct, October 08–12, 2023, Cancun, Quintana Roo, Mexico Sun, Ruiz and Pirmoradi, and Vega

to place the wearable in different body parts, interchangeable elec-
trodes to facilitate replacements, and repurposes the electrodes into
other jewelry pieces.

Numerousworks have explored the intersection of wearable tech-
nology and jewelry design, paving the way for innovative applica-
tions [2, 7, 11, 29]. This research not just utilize jewelry techniques
to design the form factor, but also the electrochemical biosensors
that seamlessly blend with wearable jewelry pieces. In this way, a
new realm of discreet and convenient glucose monitoring opens
up, expanding the horizons of HCI-driven biosensor applications
in the context of stylish and functional wearable accessories for
sensing body fluids.

The paper presents BioSparks, the design of electrochemical
biosensors as jewelry with a modular, repurposing and interchange-
able approaches. Our contributions include:

1. Electrochemical Electrodes as Jewelry: Departing from con-
ventional flat-shaped electrodes, we introduce a novel 3D design of
jewelry-based electrochemical biosensors, created with common
jewelry techniques. The wearability factors for designing jewelry
in electrochemical biosensors are proposed, and their functionality
was evaluated with ten glucose concentrations.

2. Repurposing Electrodes: In contrast to the typical practice of
disposing of electrodes or other biosensors after use, our repur-
posing method promotes sustainability by reusing the electrodes
within the jewelry’s chain, as pendants or earrings.

3. Modular Jewelry Design: The modular design offers flexibility
and adaptability to accommodate different body parts and sizes.

4. Interchangeable Electrodes: Electrodes can be easily replaced
after their lifespan. While other devices offer this feature, our ap-
proach seamlessly integrates pressure rivets, a jewelry method for
attaching and detaching pieces, into the biosensor design.

2 RELATEDWORKS
The HCI and Wearables field much explored smart jewelry as a
wearable technology form factor. Analytical studies identify design
criteria, including functionality, form factor, interactivity, and aes-
thetics [15]. Jewelry design embraces an artistic approach [7, 29].
Many projects adopt a modular design approach, combining form
factors. For example, BLInG project uses a beaded design with in-
terchangeable electronic components [22]. Gehna explores sensor-
based touch-based jewelry technology for different body areas [2].
Some modular smart jewelry studies focus on design principles,
using modularity to shape the product’s form factor and inform
research nature [7, 24]. Similarly, BioSparks adopts a modular ap-
proach with interchangeable straps, allowing users to decide the
device’s placement based on clothing, sweat location, or style.

Jewelry’s close proximity to the skin enables interaction with
movement, heat, and touch. For instance, Gemini embeds sensors
in face jewels to detect facial muscle movements [47]. ThermalRing
uses a low-resolution thermal camera for gestures and ThermalTag
to reflect heat [59]. The Empathy Amulet generates warmth using a
Kapton heater [6]. Considering this proximity was a crucial design
consideration for our project, as we aimed to collect sweat data
through electrochemical biosensors. Other projects explore attach-
ing electronics to the skin through beauty products [34, 48], fake
nails [25, 50], and hair extensions [39, 49]. Additionally, iSkin and

Duo Skin sense touch by a temporal tattoo as the form factor, simi-
lar to the most common form factor for sweat biosensors [26, 53].
While drawing inspiration from these works, we found that directly
applying and reapplying electrochemical biosensors on the skin
becomes impractical for everyday use due to the precision required
by our sensors.

BioSparks focuses on using an electrochemical biosensor for
glucose analysis in sweat, as sweat sampling offers a less invasive
method of gathering biodata [23, 30]. Existing form factors for elec-
trochemical biosensors include smartwatches [4], bandages [37],
headbands [18], rings [27], and temporary tattoos [28]. Adhesive-
style wearable sensors have been explored in previous works [20, 21,
52], including a wrist-worn multiplexed sensor array for sweat anal-
ysis [19]. Various form factors for glucose biosensors in sweat have
been introduced, with an emphasis on skin-friendly sensors [5]. In
the realm of jewelry biosensors, Sweatcessory presented a choker
with a wearable potentiostat to collect sodium levels from sweat
[56], while e-ring is a flexible 3D printed ring with gold electrodes
capable of electrochemical glucose sensing [27]. Additionally, an
electrochemical sensing ring was developed for detecting tetrahy-
drocannabinol and alcohol from saliva [38]. BioSparks employs
electrochemistry techniques and evaluations from past studies of
electrochemical wearables, specifically utilizing chronoamperomet-
ric data for glucose level measurements [1, 13, 17, 31, 62].

In the context of the production of biosensors, recent devel-
opments have primarily focused on making biosensors more sus-
tainable and reducing production costs [8]. Some biosensors have
attempted to use environmentally friendly materials for electrodes
[10, 36] or substrates [57] to reduce waste resulting from disposal.
However, it is worth noting that, the elements required for elec-
trode fabrication are not easily recyclable [45]. For example, in
the case of glucose test strips, research shows that diabetic users
alone can go through 1.5 to 3 strips every day [14]. The frequent
replacement of these strips is evident in the overall cost of glucose
self-monitoring [55]. BioSparks proposes a different approach by
repurposing biosensors as jewelry or accessories. By using elec-
trochemical biosensors with longer lifespans, the frequency of re-
placements is reduced compared to traditional test strips. Sustain-
ability is enhanced through the upcycling of otherwise discarded
components, contributing to a more environmentally friendly and
cost-effective solution.

3 DESIGN CONSIDERATIONS
We drew inspiration from the Wearability Factors for Skin Inter-
faces [33] and adapted them to propose our Wearability Factors
for Designing Jewelry Biosensors, incorporating additional consid-
erations such as modularity, interchangeability, and repurposing
within our system.

• Modularity - The jewelry piece serves as a versatile module
that can be worn on different parts of the body due to its
curved design and the adjustable leather strap that secures
it. By using different strap’s lengths, the piece can be worn
around the neck, waist, arm, wrist, or even as a ring on the
finger.

• Interchangeable - The electrodes can be replaced from the
case without the need to open thanks to a rivet system
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that enables the attachment and detachment of electrodes
through pressure. To facilitate their removal, the electrodes’
holder features a raised border, providing a convenient grip.
The heart shape of the holder allows for easy replacement
in the correct orientation of the electrode.

• Repurposing - A repurposing feature is added to the system
by creating a heart-shaped perforation in the leather strap
which allows the user to insert the used electrode and reuse it
as an multi functional accessory, instead of disposing it. The
electrodes themselves are also unique, compared to industry
electrodes, artistic designs that can serve as jewelry. This
reduces waste of disposing used electrodes, which contain
precious metal and hard to recycle materials [8, 36]. The
replaceable silicone part has a perforation and notch so it
can also be used as a pendant by inserting a chain.

• Location - Locations for the modular use of BioSparks are
based on the body sweat map [3, 9, 58] which suggested the
neck, arms, and torso as heat and sweat producing parts. The
replaceable biosensor is strategically positioned at the center
of the case, ensuring optimal contact with the body.

• Body characteristics - The case is designed following the
curvature of the body, and the circuit and battery are flexible
to follow the case shape. The leather straps can be fastened
to the body shape and size.

• Body movements - The electrodes are embedded in a silicone
insert to provide comfort to the user and are sticking out of
the case to ensure contact with the skin.

• Weight and attachment method - Leather straps are used to
ensure holding the jewelry and device firmly and secure.

• Aesthetics - Thanks to the jewelry-like case and electrodes in
the inner side of it, electronics and electrodes are not visible
when the device is worn.

• Interaction - Data visualization and interaction occur from
and through the app.

• Conductors - Sterling silver alloy is used to create the jewelry
electrodes that are part of the circuit design.

• Insulation - an inner silicone case ensure the insulation of
the PCB to the silver case. The jewelry electrodes are also
embedded in a silicone holder.

• Device care - case can be opened for cleaning purposes and
battery recharging.

• Connectors - common wires to connect the electronic com-
ponents, and silver parts are soldered with silver paste.

• Communication - The circuit includes a Bluetooth compo-
nent to send data to the application.

• Battery Life - A rechargeable commercial battery is used.

4 BIOSPARKS IMPLEMENTATION
The implementation of BioSparks consist on the design of the elec-
trochemical biosensor, the integration with the circuit, and the
design of the case as a jewelry for embedding electronics.

Traditional Jewelry Design for Electrode Fabrication.
The replaceable electrode is comprised of three parts: pin elec-

trodes, electrodes receivers and silicone holder. The pin electrodes
were made using Sterling silver alloy (925 parts of silver, 75 parts of

Figure 2: Designing Electrodes with Traditional Jewelry

copper) due to its common use in jewelry making as well as conduc-
tivity properties. We carefully cut the heads of the pins from thin
flat sheets of silver, shaping and polishing them into three distinct
shapes to easily identify each electrode (moon, circle, star). These
pin electrodes were then soldered to posts with a 0.9mm external
diameter. The receivers utilize a rivet system that connects the pins
through pressure, similar to a male-female attachment. They were
made by soldering a silver tube of slightly wider inner diameter to
flat pieces of silver that would become the connector to the PCB.
The holder firmly secure and insulates the electrodes. It was 3D
printed in a FormLabs STL printer using Flexible 80A V1 resin. The
silicone holder was perforated on the top to receive and securely
hold the pins in place. On the bottom, we used a thicker drill bit to
create a fitting for the receivers. Finally, all the metal pieces were
cleaned with Riogrande pickling solutions, then polished and finally
rinsed again using neutral soap and de-ionized water.

Our biosensor comprises a three-electrode system. The work-
ing electrode reacts specifically with the analyte, glucose. It was
activated using an enzyme solution and cross-linker solution to
make it selective to glucose only, excluding other analytes 1. The
enzyme solution specifically target glucose, and the cross-linker is
used as part of the activation process. The other two electrodes in
the system include the reference electrode, which has a fixed poten-
tial for reference, and the counter electrode, acting as an auxiliary
electrode that completes the circuit and enables the flow of current
[16, 61]. Finally, an insulating barrier solution 2 is applied over the
non-sensing portion of the electrodes for insulation.

The finished biosensor is connected to the ecFlex potentiostat3.
Each of the three electrodes is connected to the corresponding pin
on the electronics. The ecFlex potentiostat operates using chronoam-
perometry, continuously sending live data to the software via BLE
communication. Chronoamperometry is an analytical electrochem-
istry technique where an electrical potential is applied and stepped

1https://www.zimmerpeacocktech.com/products/liquid-solutions/glucose-strip-
active-formulation
2https://shop.zimmerpeacock.com/products/biosensor-barrier-layer-solution
3https://www.zimmerpeacocktech.com/products/electrochemical-sensors/wearable-
biosensors/
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Figure 3: Chronoamperometric measures for each glucose
solution with our biosensor

in the potentiostat system, and the resulting current is measured.
This technique is the standard electrochemical technique used for
glucose measurements [40, 43, 60]. The system is powered by a
flexible 3V battery.

Silver Case for Embedding Electronics. Flat silver sheets
were manually cut and curved using a bracelet mandrel. They were
then soldered together using medium solder for silver (60 parts
silver, 40 parts brass). Decorative gems were cast in silicone molds
using epoxy colored resin and placed them after polishing the case.
The gems were hold to the exterior case within boxes which were
pre-formed in a finer sheet and soldered to the case. Additionally,
an interior case was 3D printed using silicone material. This case
served as an isolating agent between the conductive materials and
held the inner electronic components securely in place.

5 TECHNICAL EVALUATION
To evaluate our jewelry biosensor, we conducted tests using 10 con-
trolled glucose solutions within the typical range found in human
sweat (2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 mM) [20, 21]. Each con-
centration was tested with the biosensor through wetting a sterile
wipe with 1 microliter of solution to simulate sweat on skin. The
potentiostat applies a preset and controlled potential. Test trials
lasted for at least 30 seconds, varied due to rate of evaporation or
absorption, during which sample data were collected. The resulting
chronoamperometric data for each solution were graphed, showing
curves following the Cottrell equation as expected for chronoam-
perometry, which describes current decay over time after initial
exposure to a test solution [32, 44, 54].

The graphed results show noticeable trends where, after an ini-
tial spike when the electrodes come into contact with the testing
solutions, each concentration stabilizes to a curve of unique ampli-
tude. Higher concentrations yield higher currents. By mapping the
values of each solution at any given time after the initial 10 seconds,
it becomes possible to estimate the concentration from the current,
as is typically done in biosensor chronoamperometry analysis [54].

Figure 4: Trendlines of current values for each concentration
at exact times after application of solutions

Figure 4 illustrates this, where the trendlines for times 12, 17, and 22
seconds have different vertical intercepts but share similar slopes
due to exponential current decay, resulting in parallel lines.

Our jewelry biosensor’s performance aligns with past research
results that used industry-grade glucose biosensor electrodes [12,
30, 41, 44]. This validation further supports the effectiveness and
reliability of our biosensor design for glucose detection in sweat.

6 CONCLUSION
BioSparks introduced a novel form factor of jewelry wearable de-
sign, incorporating electrochemical biosensors capable of detecting
glucose in sweat. Our contributions lie in four key areas: intro-
ducing traditional jewelry design for electrochemical biosensors,
adopting a modular design approach for flexible biosensor place-
ment, implementing interchangeable jewelry electrodes for easy
replacement, and repurposing used electrodes within the jewelry’s
chain, as a pendant or as earrings. This exploration of electrochem-
ical sweat biosensors represents a burgeoning field within the HCI
community, offering exciting opportunities for interacting with
bodily fluids and developing health monitoring technologies.

Future works involve the use of multiple electrochemical biosen-
sors to detects illnesses that require more than one analyte informa-
tion, a cleaning process to prolong their lifetime, and experimenting
with other jewelry materials that could be used for electrochemical
biosensors such as platinum, gold or other sustainable materials.
Technical evaluations will be done on oxidation, durability of our
electrodes, and reliability of biosensors. We aim to conduct ex-
periments with potential users in exploring 1) other applications
for repurposing electrodes for continued support of sustainable
biosensors and 2) incorporation of an app visualizer for support
of user needs and feedback. This project was a collaboration with
two jewelry designers, next iterations will include workshops and
interviews with jewelry designers and biotechnologists.
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